Sains Malaysiana 53(1)(2024): 163-169
http://doi.org/10.17576/jsm-2024-5301-13
Nanocellulose-Based Separators in Lithium-Ion Battery
(Pemisah Berasaskan Nanoselulosa dalam Bateri Litium Ion)
MANJUSHA
ELIZABETH MATHEW1, ISHAK AHMAD1,*,
SABU THOMAS3,4,5, MOHAMMAD B. KASSIM1,2 & RUSLI DAIK1
1Department of Chemical Sciences,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
3School of Chemical Sciences, Mahatma Gandhi
University, Priyadarshini Hills P. O., Kottayam,
686560 Kerala, India
4International and Inter University Centre for Nanoscience and
Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686560 Kerala, India
5School of Energy Materials, Mahatma Gandhi
University, Priyadarshini Hills P. O., Kottayam,
686560 Kerala, India
Diserahkan: 12 Disember 2023/Diterima: 22 Disember 2023
Abstract
Lithium-ion batteries are the essential parts of many portable electronic devices. They draw substantial recognition by virtue
of their advantages over other batteries. Separators are critical to the working of
lithium-ion batteries. The
separator is a key component of lithium-ion battery that isolates the cathode
and anode. Though the separator does not participate in the electrochemical
process, it plays a major role in the safety
of the battery. Nanomaterials
are used in many applications in our life. Nanocellulose are sustainable materials used to fabricate parts
of energy storage devices. This
review discusses the potential of nanocellulose incorporated materials to use as separators in
lithium-ion batteries.
Keywords: Bacterial nanocellulose;
cellulose nanocrystal; lithium-ion battery; nanocellulose;
separators
Abstrak
Bateri litium-ion adalah bahagian penting bagi kebanyakan peranti elektronik mudah alih. Ia mendapat pengiktirafan yang besar berdasarkan kelebihan mereka berbanding bateri lain. Pemisah adalah penting untuk bateri litium-ion (LIB) berfungsi. Walaupun pemisah tidak melibatkan proses elektrokimia, ia memainkan peranan utama dalam keselamatan bateri. Bahan nanoselulosa adalah bahan yang berpotensi untuk pelbagai aplikasi termasuk dalam sektor tenaga. Kajian ini meneroka potensi nanoselulosa untuk digunakan sebagai pemisah dalam bateri ion litium. Kajian ini menyerlahkan penyelidikan dalam bidang ini dengan tumpuan khusus pada bahan nanoselulosa berbeza daripada sumber semula jadi seperti selulosa nanofibril (CNF), selulosa nanohablur (CNC) dan bakteria nanoselulosa (BC) untuk memasang pemisah di dalam bateri litium-ion. Secara keseluruhannya, ulasan ini memberikan pandangan yang lebih mendalam tentang sumbangan bahan pemisah yang digabungkan dengan nanoselulosa kepada keselamatan dan prestasi bateri litium-ion.
Kata kunci: Bakteria nanoselulosa; bateri litium-ion; nanoselulosa; pemisah; selulosa nanohablur
RUJUKAN
Abitbol, T., Rivkin, A., Cao, Y., Nevo, Y.,
Abraham, E., Ben-Shalom, T., Lapidot, S. & Shoseyov, O. 2016. Nanocellulose,
a tiny fiber with huge applications. Current
Opinion
in Biotechnology 39: 76-88.
Alemdar, A. & Sain, M. 2008. Biocomposites from
wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos.
Sci. Technol. 68(2): 557-565.
Arora, P. & Zhang, Z.J. 2004. Battery
separators. Chemical Reviews 104:
4419-4462.
Barbosa, J.C., Gonçalves, R., Costa, C.M.
& Lanceros-Mendez, S. 2021. Recent advances on
materials for lithium-ion batteries. Energies 14(11): 3145.
Chen, H., Wang, Z., Feng, Y., Cai, S., Gao, H., Wei, Z. & Zhao, Y. 2023.
Cellulose-based separators for lithium batteries: Source, preparation and
performance. Chemical Engineering Journal 471: 144593.
Cherian, R.M., Tharayil, A., Varghese, R.T., Antony, T., Kargarzadeh, H., Chirayil,
C.J.
& Thomas, S. 2022. A review on the emerging applications of nano-cellulose as advanced coatings. Carbohydrate Polymers 282: 119123.
Deimede, V. & Elmasides, C. 2015. Separators for lithium-ion batteries: A
review on the production processes and recent developments. Energy Technology 3(5): 453-468.
De Lima Fontes, M., Meneguin, A.B., Tercjak, A.,
Gutierrez, J., Cury, B.F., dos Santos, A.M., Ribeiro,
S.L. & Barud, H.S. 2019. Effect of in situ modification of bacterial cellulose with carboxymethyl cellulose on its nano/microstructure and methotrexate
release properties. Carbohydr. Polym.
179: 126-134.
Eichhorn, S.J., Etale, A., Wang, J., Berglund, L.A., Li, Y., Cai, Y., Chen, C., Cranston, E.D., Johns, M.A., Fang, Z., Li, G., Hu, L., Khandelwal,
M., Lee, K-Y., Oksman, K., Pinitsoontorn, S., Quero,
F., Sebastian, A., Titirici, M.M., Xu, Z., Vignolini, S. & Frka-Petesic, B. 2022. Current
international research into cellulose as a functional nanomaterial for advanced applications. Journal of Materials Science 57:
5697-5967.
Goodenough, J.B. 2012. Rechargeable batteries:
Challenges old and new. Journal of Solid
State Electrochemistry 16(6): 2019-2029.
Goodenough, J.B. & Park, K. 2013. The
Li-ion rechargeable battery: A perspective. Journal
of American Chemical Society 135(4): 1167-1176.
Heidari, A.A. & Mahdavi, H. 2019. Recent development of
polyolefin‐based microporous separators for Li−ion batteries: A review. Chemical Records 20(6): 570-595.
Jakob, M., Mahendran, A.R., Gindl-Altmutter, W., Bliem,
P., Konnerth, J., Muller, U. & Veigel, S. 2022. The strength and stiffness of
oriented wood and cellulose-fibre materials: A review. Progress in
Materials Science 125: 100916.
John, S., Rajeevan,
S., Greeshma, K.P. & George, S.C. 2023. Nanocellulose-based polymer composites for energy applications. In Applications
of Multifunctional Nanomaterials edited by Thomas, S., Kalarikkal,
N. & Abraham, A.R. Elsevier. pp. 167-175.
Kargarzadeh,
H., Huang, J., Lin, N., Ahmad, I., Mariano, M., Dufresne, A., Thomas, S. & Gałęski, A. 2018. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and
porous nanocomposites. Progress in
Polymer Science 87: 197-227.
Kargarzadeh,
H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin,
S.Y. & Sheltami, R.M. 2012. Effects of hydrolysis
conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19: 855-866.
Kim, J-H., Shim, B.S., Kim, H.S., Lee, Y-J.,
Min, S-K., Jang, D., Abas, Z. & Kim, J. 2015. Review of nanocellulose for sustainable future
materials. International Journal of Precision Engineering and Manufacturing-Green Technology 2(2): 197-213.
Klemm, D., Heublein, B., Fink, H-P. & Bohn, A. 2005. Cellulose:
Fascinating biopolymer and sustainable raw material. Angewante Chemie International Edition 44(22): 3358-3393.
Klemm, D., Kramer, F.,
Moritz, S., Lindström, T., Ankerfors,
M., Gray, D. & Dorris, A. 2011. Nanocelluloses: A new family of nature‐based
materials. Angewante Chemie International Edition 50(201): 5438-5466.
Kamalesh, T., Kumar, P.S., Hemavathy, R.V. & Rangasamy,
G.A. 2023. Critical review on sustainable cellulose materials and its multifaceted applications. Industrial Crops and Products 203:
117221.
Kim, T., Song, W., Son, D-Y., Ono, L.K. &
Qi, Y. 2019. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. Journal of Materials
Chemistry A 7(7): 2942-2964.
Lagadec , M.F., Zahn, R. & Wood, V. 2019.
Characterization and performance evaluation of lithium-ion battery separators. Nature
Energy 4: 16-25.
Lee, H., Yanilmaz,
M., Toprakci, O., Fu, K. & Zhang, X.A. 2014. A
review and recent developments in membrane separators for rechargeable
lithium-ion batteries. Energy & Environmental Science 7:
3857-3886.
Lei, W., Jin, D.,
Liu, H., Tong, Z. & Zhang, H. 2020. An overview of bacterial cellulose in flexible electrochemical energy storage. ChemSusChem. 13(15): 3731-3753.
Leong, M.Y., Kong,
Y.L., Harun, M.Y., Looi, C.Y.
& Wong, W.F. 2023. Current advances of nanocellulose application in biomedical field. Carbohydrate Research 532: 108899.
Liu, K., Liu, Y., Lin, D., Pei, A. & Cui,
Y. 2018. Materials for lithium-ion battery safety. Science Advances 4(6). https://doi.org/10.1126/sciadv.aas9820
Liu, Y., Sun, Z., Tan, K., Denis, D.K., Sun,
J., Liang, L., Hou, L. & Yuan, C. 2019. Recent progresses in flexible non-lithium based rechargeable batteries. Journal of Materials Chemistry A 7(9):
4353-4382.
Maity, C.S., De, S., Verma, K., Moniruzzaman, M. & Sahoo, S. 2023. Nanocellulose:
A versatile nanostructure for energy storage applications. Industrial Crops and Products 204(Part A): 117218.
Marsh, R.A., Vukson,
S., Surampudi, S., Ratnakumar,
B.V., Smart, M.C., Manzo, M. & Dalton, P.J. 2001. Li ion batteries for
aerospace applications. Journal of Power
Sources 97-98: 25-27.
Megahed, S. & Scrosati, B. 1994. Lithium-ion rechargeable batteries. Journal of Power
Sources 51: 79-104.
Miao, W., Wang, J., Li, G., Liu, S. & Luo,
X. 2023. Superior thermal stability of PVA/cellulose composite membranes for lithium-ion battery separators prepared
by impregnation method with noncovalent cross-linking of intermolecular multiple hydrogen-bonds. Journal of Energy Storage 66: 107353.
Moon, R.J., Martini, A., Nairn,
J., Simonsen, J. & Youngblood, J. 2011. Cellulose
nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40(7): 3941-3994.
Mondal, S. 2017. Preparation, properties and applications of nanocellulosic materials. Carbohydrate Polymers 163: 301–316. https://www.sciencedirect.com/science/article/abs/pii/S0144861716314 266
Muchakayala R., Yarramsetti S., Maram P.S., Kalluri S., Ran, F. & Sangaraju, S. 2023. Modified ceramic coated polyethylene separator – A strategy for using lithium metal as anode with superior electrochemical performance and thermal stability. Journal of Energy Storage 68: 107687. https://www.sciencedirect.com/science/article/abs/pii/S2352152X23010848
Zhu, J., Yanilmaz, M., Fu, K., Chen, C., Lu, Y., Jiang, H., Kim, D. & Zhang, X. 2016. Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries. Journal of Membrane Science 504: 89–96. https://www.sciencedirect.com/science/article/abs/pii/S0376738816300199
Nestler, T., Schmid, R., Münchgesang, W. & Bazhenov, V. 2014. Separators-technology review:
Ceramic based separators for secondary batteries. AIP Conference Proceedings 1597(1): 155-184.
Nitta, N., Wu, F., Lee, J. & Yushin, G. 2015. Li-ion battery materials: Present and
future. Materials Today 18(5): 252-264.
Nzereogu, P.U., Omah, A.D., Ezema, F.I., Iwuoha, E.I. & Nwanya, A.C.
2022. Anode materials for lithium-ion batteries: A review. Appl. Surf. Sci. Adv. 9: 100233.
Pradhan, D., Jaiswal, A.K. & Jaiswal,
S. 2022. Emerging technologies for the production of nanocellulose from lignocellulosic biomass. Carbohydrate Polymers 285: 119258.
Scrosati, B. & Garche, J. 2010. Lithium batteries: Status, prospects and
future. Journal of Power Sources 195(9): 2419-2430.
Sunden, B. 2019. Battery Technologies. Hydrogen, Batteries
and Fuel Cells. London: Academic Press. pp. 57-79.
Suriyakumar,
S., Kanagaraj, M., Kathiresan,
M., Angulakshmi, N., Thomas, S. & Stephan, A.M.
2018. Metal-organic frameworks based membrane as a perm selective separator for
lithium-sulfur batteries. Electrochimica Acta 265: 151-159.
Szabó, L., Milotskyi, R., Sharma, G. & Takahashi, K. 2023.
Cellulose processing in ionic liquids from a materials science perspective: Turning a versatile biopolymer in
to the cornerstone of our sustainable future. Green
Chemistry 25(14): 5338-5389.
Tarascon, J-M. & Armand,
M. 2001. Issues and challenges facing rechargeable lithium
batteries. Nature 414(6861): 359-367.
Teng, C.P., Tan, M.Y., Toh, J.P.W., Lim, Q.F., Wang, X., Ponsford,
D., Lin, E.M.J., Thitsartarn, W. & Tee, S.Y. 2023. Advances in
cellulose-based composites for energy applications. Materials 16(10): 3856.
Townsend, A. & Gouws, R. 2022. A
comparative review of lead-acid, lithium-ion and ultra-capacitor technologies
and their degradation mechanisms. Energies 15(13): 4930.
Trache, D., Hussin, M.H., Haafiz, M.M. &
Thakur, V.K. 2017. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 9: 1763-1786.
Wang, T., Liu, N., Zhou, H. & Chen, M-J.
2023. A biodegradable nano-composite membrane for high-safety and durable lithium-ion batteries. Micro Nano Letters 18: e212168.
Wang, E., Wu, H-P., Chiu, C-H. & Chou,
P-H. 2019. The effect of battery separator properties on thermal ramp, overcharge and short circuiting of rechargeable
Li-ion batteries. Journal of Electrochemical
Society 166(2): A125-A131.
Wu, H., Huang, H., Xu, Y., Xu, F. & Zhang,
X. 2023. Ultrathin separator with efficient ion transport and superior stability prepared from cotton cellulose for advanced supercapacitors. Chemical
Engineering Journal 470: 144089.
Xu, T., Du, H., Liu, H., Liu, W., Zhang, X.,
Si, C., Liu, P. & Zhang, K. 2021. Advanced nanocellulose-based composites for flexible
functional energy storage devices. Advanced Materials 33(48): 2101368.
Xu, X., Liu, F., Jiang,
L., Zhu, J.Y., Haagenson, D. & Wiesenborn, D.P. 2013. Cellulose nanocrystals vs.
cellulose nanofibrils: A comparative study on their
microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces 5(8): 2999-3009.
Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y. & Shen, G. 2014.
Flexible energy-storage devices: Design consideration and recent progress. Advanced Materials 26: 4763-4782.
Wegner, T.H. & Jones, P.E. 2006. Advancing
cellulose-based nanotechnology. Cellulose 13(2): 115-118.
Yan, W., Liu, J., Zheng, X., Zhang, J. &
Tang, K. 2023. Wood-derived high performance cellulose structural materials. e-Polymers 23(1): 20230010.
Yang, M. & Hou,
J. 2012. Membranes in lithium ion batteries. Membranes 2(3): 367-383.
Yoshino, A. 1985. US Patent No. 4, 688, 595
and JP No. 1989293.
Zhang, S.S. 2007. A review on the separators
of liquid electrolyte Li-ion batteries. Journal of Power Sources 164(1): 351-364.
Zhang, T., Yang, L., Yan, X. & Ding, X.
2018. Recent advances of cellulose-based materials and their promising application in sodium-ion batteries and capacitors. Small 14(47): 1802444.
Zhu, J., Yanilmaz, M., Fu, K., Chen, C., Lu, Y., Jiang, H., Kim, D. & Zhang, X. 2016. Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries. Journal of Membrane Science 504: 89–96. https://www.sciencedirect.com/science/article/abs/pii/S0376738816300199
Zifan, L., Mamun, A., Rizzo, D.M. & Onori,
S. 2018. Combined battery design optimization and energy management of a series hybrid military truck. SAE International Journal of Alternative Power 7(2): 155-168.
*Pengarang untuk surat-menyurat; email:
gading@ukm.edu.my
|